Published in

Springer Verlag, Journal of the Korean Physical Society, 5(67), p. 941-945

DOI: 10.3938/jkps.67.941

Links

Tools

Export citation

Search in Google Scholar

Vapor-phase-processed fluorinated self-assembled monolayer for organic thin-film transistors

Journal article published in 2015 by Jeongkyun Roh, Changhee Lee ORCID, Jeonghun Kwak ORCID, Byung Jun Jung, Hyeok Kim
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A vapor-phase-processed fluorinated silazane self-assembled monolayer (SAM), 1,3-bis(trifluoropropyl)-1,1,3,3-tetramethyldisilazane (FPDS), was introduced as a surface modifier for pentacene-based organic thin-film transistors (OTFTs). A remarkable improvement in the field effect mobility from 0.25 cm2/Vs (without SAM-treatment) to 0.42 cm2/Vs (with FPDS-treatment) was observed, which was attributed to the better pentacene growth on a hydrophobic surface. A significant reduction in the contact resistance was also observed by FPDS treatment due to the improved bulk conductivity and diminished charge trapping at the gate dielectric surface by the SAM treatment. In addition, FPDS treatment efficiently improved the bias stability of the OTFTs; the drain-to-source current degradation by the bias stress was greatly reduced from 80% to 50% by FPDS treatment, and the characteristic time for charge trapping of the FPDS treated OTFTs was approximately one order of magnitude larger than that of the OTFTs without SAM treatment.