Published in

American Chemical Society, Nano Letters, 11(15), p. 7355-7361, 2015

DOI: 10.1021/acs.nanolett.5b02720

Links

Tools

Export citation

Search in Google Scholar

Interfacial Control of Magnetic Properties at LaMnO<sub>3</sub>/LaNiO<sub>3</sub> Interfaces

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The functional properties of oxide heterostructures ultimately rely on how the electronic and structural mismatches occurring at interfaces are accommodated by the chosen materials combination. We discuss here LaMnO3/LaNiO3 heterostructures, which display an intrinsic interface structural asymmetry depending on the growth sequence. Using a variety of synchrotron-based techniques, we show that the degree of intermixing at the monolayer scale allows interface-driven properties such as charge transfer and the induced magnetic moment in the nickelate layer to be controlled. Further, our results demonstrate that the magnetic state of strained LaMnO3 thin films dramatically depends on interface reconstructions.