Published in

American Physical Society, Physical Review A, 3(85)

DOI: 10.1103/physreva.85.033829

Links

Tools

Export citation

Search in Google Scholar

Nonlinear light-matter interaction with femtosecond high-angle Bessel beams

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We show that high-angle Bessel beams may significantly reduce nonlinear pulse distortions due, for example, to nonlinear Kerr effects (self-phase-modulation and self-focusing) yet enhance ionization and plasma generation. Holographic reconstruction of Bessel beams in water show intensity clamping at increased intensities and evidence of nontrivial plasma dynamics as the input energy is increased. The solvated electron density increases significantly and the cavitation-induced bubbles are ejected from the focal region indicating a significant excess plasma heating in the Bessel-pulse wake.