Published in

Elsevier, Current Opinion in Microbiology, 5(15), p. 621-631, 2012

DOI: 10.1016/j.mib.2012.09.003

Links

Tools

Export citation

Search in Google Scholar

Convergent and divergent evolution of metabolism in sulfur-oxidizing symbionts and the role of horizontal gene transfer

Journal article published in 2012 by Manuel Kleiner, Jillian M. Petersen, Nicole Dubilier ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Symbioses between marine invertebrates and autotrophic sulfur-oxidizing bacteria have evolved from multiple lineages within the Gammaproteobacteria in a striking example of convergent evolution. These GammaSOX symbionts all perform the same basic function: they provide their hosts with nutrition through the fixation of CO(2) into biomass using reduced sulfur compounds as an energy source. However, our review of recent -omics based studies and genome mining for this study revealed that the GammaSOX symbionts diverge in many other metabolic capabilities and functions, and we show how these divergences could reflect adaptations to different hosts and habitat conditions. Our phylogenetic analyses of key metabolic genes in GammaSOX symbionts revealed that these differed markedly from 16S rRNA phylogenies. We hypothesize that horizontal gene transfer (HGT) would explain many of these incongruencies, and conclude that HGT may have played a significant role in shaping the metabolic evolution of GammaSOX symbionts.