Published in

Elsevier, Phytochemistry, 10(69), p. 1947-1961, 2008

DOI: 10.1016/j.phytochem.2008.04.018

Links

Tools

Export citation

Search in Google Scholar

Hydroxynitrile glucosides

Journal article published in 2008 by Nanna Bjarnholt, Birger Lindberg Møller ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

beta- and gamma-Hydroxynitrile glucosides are structurally related to cyanogenic glucosides (alpha-hydroxynitrile glucosides) but do not give rise to hydrogen cyanide release upon hydrolysis. Structural similarities and frequent co-occurrence suggest that the biosynthetic pathways for these compounds share common features. Based on available literature data we propose that oximes produced by CYP79 orthologs are common intermediates and that their conversion into beta- and gamma-hydroxynitrile glucosides is mediated by evolutionary diversified multifunctional orthologs to CYP71E1. We designate these as CYP71(betagamma) and CYP71(alphabetagamma); in combination with the classical CYP71(alpha) (CYP71E1 and orthologs) these are able to hydroxylate any of the carbon atoms present in the amino acid and oxime derived nitriles. Subsequent dehydration reactions and hydroxylations and a final glycosylation step afford the unsaturated beta- and gamma-hydroxynitrile glucosides. This scheme would explain the distribution patterns of alpha-, beta- and gamma-hydroxynitrile glucosides found in plants. The possible biological functions of these hydroxynitriles are discussed.