Published in

Royal Society of Chemistry, RSC Advances, 103(5), p. 85111-85121

DOI: 10.1039/c5ra17421j

Links

Tools

Export citation

Search in Google Scholar

Reactivity comparison of five‐and six‐membered cyclometalated platinum(II) complexes in oxidative addition reactions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The compound [PtMe(bzpy)(DMSO)] (1; bzpy = 2-benzylpyridinate) was synthesized by reaction of cis-[PtMe2(DMSO)2] with 1 equiv. of bzpyH under reflux conditions in toluene through C-H activation of the carbon-hydrogen bond in 2-benzylpyridine. Then, the complex [PtMe(bzpy)(PPh3)], 2, was prepared by addition of PPh3 to complex 1. Complex 2 undergoes oxidative addition with methyl iodide to give [PtMe2I(bzpy)(PPh3)], 3. NMR spectroscopy (1H and 31P) and X-ray crystallography (supported by DFT calculations) clearly showed that the thermodynamic isomer product 3, with iodide trans to C of bzpy rather than the related kinetic isomer, 3, in which iodide is trans to methyl, is obtained. Mechanistic studies using UV-vis spectroscopy and DFT calculations indicate that the reaction occurs via a SN2 mechanism. The kinetic study of the oxidative addition of methyl iodide to the non-planar, six-membered cyclometalated complex with that of the five-membered cyclometalated [PtMe(ppy)(PPh3)], in which ppy = 2-phenylpyridinate, shows that the ring size of the chelating unit has a significant impact on the rate of the reaction. This journal is