Published in

BMJ Publishing Group, Journal of Investigative Medicine, 5(58), p. 725-729, 2010

DOI: 10.2310/jim.0b013e3181db874e

Links

Tools

Export citation

Search in Google Scholar

Cigarette Smoke Alters Tissue Inhibitor of Metalloproteinase 1 and Matrix Metalloproteinase 9 Levels in the Basolateral Secretions of Human Asthmatic Bronchial Epithelium In Vitro

Journal article published in 2010 by Alan M. Watson, Angela S. Benton, Mary C. Rose, Robert J. Freishtat ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background Asthma, a major cause of chronic lung disease worldwide, has increased in prevalence in all age and ethnic groups, particularly in urban areas where cigarette smoking is common. Cigarette smoke (CS) significantly impacts the development of asthma and is strongly associated with increased asthma-related morbidity. Purpose To evaluate bioinformatic analyses predicting that CS would alter expression of tissue inhibitor of metalloproteinase (TIMP) 1 and matrix metalloproteinase (MMP) 9 in asthmatic epithelium. Methods Primary differentiated normal (n = 4) and asthmatic (n = 4) human respiratory epithelia on collagen-coated Transwells at air-liquid interface were exposed for 1 hour to CS condensate (CSC) or hydrogen peroxide (H2O2). Tissue inhibitor of metalloproteinase 1 and MMP-9 protein levels were measured at 24 hours by enzyme-linked immunosorbent assay in cell lysates and in apical and basolateral secretions. Results Tissue inhibitor of metalloproteinase 1 and MMP-9 levels in the apical secretions of normal and asthmatic epithelia were unchanged after exposure to CSC and H2O2. However, CSC increased TIMP-1 levels in the basolateral secretions of both normal and asthmatic epithelia, but decreased MMP-9 levels only in asthmatic basolateral secretions, resulting in a 2.5-fold lower MMP-9/TIMP-1 ratio that corresponded to decreased MMP-9 activity in CS-exposed asthmatic basolateral secretions. Conclusions These data validate our prior bioinformatic analyses predicting that TIMP-1 plays a role in the stress response to CS and indicate that asthmatics exposed to CS may be more susceptible to MMP-9-mediated airway remodeling. This is in agreement with the current paradigm that a reduction in the MMP-9/TIMP-1 ratio is a milieu that favors subepithelial airway remodeling in chronic asthma.