Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (763), 2003

DOI: 10.1557/proc-763-b9.5

Links

Tools

Export citation

Search in Google Scholar

Photoconductive CdS: how does it Affect CdTe/CdS Solar Cell Performance?

Journal article published in 2002 by S. Hegedus, D. Ryan, K. Dobson ORCID, B. McCandless, D. Desai
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractPhotoconductive CdS (PC-CdS) in CdS/CdTe solar cells from five different sources is investigated using spectral sensitization of apparent quantum efficiency (AQE) and J-V analysis. Red bias light significantly enhances the blue AQE, commonly leading to AQE>1 below 550 nm, and blue bias light enhances the red AQE, but to a much smaller extent. These enhancements are more pronounced with increasing forward bias, after stress and in devices with intentionally Cu-doped CdS. This behavior is observed to some degree in all devices with CdS, but is absent in cells without CdS. These effects are consistent with blue light, either ac monochromatic or dc bias, increasing the CdS conductivity. This causes an increase in the field and depletion width in the CdTe to maintain balanced space charge, leading to increased collection of carriers from the CdTe. The CdS conductivity modulation can also change the AQE due to a change in equivalent circuit resistance. Analysis of J-V data measured with white, blue, red or no light indicates little dependence of series resistance or diode quality factor on the illumination spectrum. Thus, the PC-CdS resistance has little effect on the solar cell J-V performance, but does influence AQE.