Published in

Elsevier, Carbon, 3(41), p. 473-478

DOI: 10.1016/s0008-6223(02)00353-6

Links

Tools

Export citation

Search in Google Scholar

On the nature of surface acid sites of chlorinated activated carbons

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Two activated carbons containing different amounts of chlorine were obtained by chlorination of an activated carbon prepared from olive stones. Variations in surface physics and chemistry of the samples were studied by N2 and CO2 adsorption, mercury porosimetry, TPD, XPS, pHPZC measurements, and by testing their behaviour as catalysts in the decomposition reaction of isopropanol. Our results indicate that chlorination of activated carbon increases its Lewis acidity but decreases its Brönsted acidity, which can be explained by the resonance effect introduced into the aromatic rings of graphene layers by the chlorine atoms covalently bound to their edges. This resonance effect could also explain the changes observed in the thermal stability of C–Cl and C–O bonds.