Full text: Download
The post-fertilisation developmental capacity of bovine oocytes recovered by ultrasound guided transvaginal follicular aspiration (ovum pick-up, OPU) is influenced by diet-induced changes in hormone and metabolite concentrations. The objectives of this experiment were first to determine whether post-prandial changes in hormone concentrations, induced by changing the frequency of feeding, influenced oocyte quality and second whether changes in plasma glucagon concentration were associated with oocyte quality. Using a 2 × 2 factorial design, Holstein heifers (six per treatment) were fed either fibre- or starch-based diets containing either 189 or 478 g starch/kg dry matter. The diets were offered in either two or four equal meals per day and supplied twice the maintenance energy requirement. Blood samples were obtained both at weekly intervals (three samples per heifer, collected before feeding) during the experiment and throughout an entire 24-h period (15 or 17 samples per heifer for twice or four times daily-fed heifers, respectively). Each heifer underwent six sessions of OPU (twice weekly) beginning 25 days after introduction of the diets. Oocyte quality was assessed by development to the blastocyst stage in synthetic oviductal fluid following in vitro fertilisation. Mean weekly plasma insulin concentrations did not differ between diets, but plasma glucagon concentrations were greatest when heifers were fed the starch-based diet twice daily compared with the other diets. When heifers were offered four meals per day, there were no meal-related changes in hormone concentrations. However, when heifers were offered two meals per day, plasma insulin concentration increased after feeding the starch-based, but not the fibre-based diet. Plasma glucagon concentration increased after meals when heifers were fed twice daily and the increase was substantially greater when the starch-based diet was fed. Treatments did not influence (overall mean with mean ± s.e.) ovarian follicle size distribution or oocyte recovery by OPU (6.2 ± 0.4 per heifer), the proportion of oocytes that cleaved following insemination (0.57 ± 0.030) or blastocyst yield (0.27 ± 0.027 of oocytes cleaved). In conclusion, by feeding diets differing in carbohydrate source at different frequencies of feeding, meal-related changes in plasma hormone profiles were altered significantly, but oocyte quality was not affected. Therefore effects of diet on oocyte quality appear not to be mediated by meal-related fluctuations in hormone concentrations.