Published in

Elsevier, Energy, 1(44), p. 792-804

DOI: 10.1016/j.energy.2012.05.013

Links

Tools

Export citation

Search in Google Scholar

Impacts of climate change on building heating and cooling energy patterns in California

Journal article published in 2012 by Peng Xu, Yu Joe Huang, Norman Miller, Pengyuan Shen, Nicole-Jeanne Schlegel ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Global climate change is making California's mild Mediterranean climate significantly warmer, and a substantial impact on building energy usage is anticipated. Studies on building cooling and energy demand have been inaccurate and insufficient regarding the impacts of climate change on the peak load pattern shifts of different kinds of buildings. This study utilized archived General Circulation Model (GCM) projections and statistically downscaled these data to the site scale for use in building cooling and heating simulations. Building energy usage was projected out to the years of 2040, 2070, and 2100. This study found that under the condition that the cooling technology stays at the same level in the future, electricity use for cooling will increase by 50% over the next 100 years in certain areas of California under the IPCC (Intergovernmental Panel on Climate Change)'s worst-case carbon emission scenario, A1F1. Under the IPCC's most likely carbon emission scenario (A2), cooling electricity usage will increase by about 25%. Certain types of buildings will be more sensitive to climate change than others. The aggregated energy consumption of all buildings including both heating and cooling will only increase slightly.