Published in

Wiley, Photochemistry and Photobiology, 5(91), p. 1021-1031, 2015

DOI: 10.1111/php.12489

Links

Tools

Export citation

Search in Google Scholar

The Evolution and Functional Role of Flavin-based Prokaryotic Photoreceptors

Journal article published in 2015 by Aba Losi ORCID, Carmen Mandalari, Wolfgang Gärtner
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Flavin-based photoreceptor proteins of the LOV (light, oxygen and voltage) superfamily are ubiquitous and appear to be essential blue-light sensing systems not only in plants, algae and fungi, but also in prokaryotes, where they are represented in more than 10% of known species. Despite their broad occurrence, only in few cases LOV proteins have been correlated with important phenomena such as bacterial infectivity, selective growth patterns or/and stress responses; nevertheless these few known roles are helping us understand the multiple ways by which prokaryotes can exploit these soluble blue-light photoreceptors. Given the large number of sequences now deposited in databases, it becomes meaningful to define a signature for bona fide LOV domains, a procedure that facilitates identification of proteins with new properties and phylogenetic analysis. The latter clearly evidences that a class of LOV proteins from alpha-proteobacteria is the closest prokaryotic relative of eukaryotic LOV domains, whereas cyanobacterial sequences cluster with the archaeal and the other bacterial LOV domains. Distance trees built for LOV domains suggest complex evolutionary patterns, possibly involving multiple horizontal gene transfer events. Based on available data, the in vivo relevance and evolution of prokaryotic LOV is discussed.