Published in

Elsevier, Physica C: Superconductivity and its Applications, (372-376), p. 287-290

DOI: 10.1016/s0921-4534(02)00701-3

Links

Tools

Export citation

Search in Google Scholar

Non-destructive evaluation of aircraft structures with a multiplexed HTS rf SQUID magnetometer array

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Eddy current (EC) testing of aircraft components for material flaws hidden deeply in the tested structure is facilitated by using an array of HTS rf superconducting quantum interference device (SQUID) sensors. Recently, the multiplexed operation of three planar HTS rf gradiometers with one electronics and one cable was shown [IEEE Trans. Appl. Supercond. 11 (2001) 1168]. In this paper, a multiplexing setup with three magnetometers is presented. SQUID magnetometers have proven advantageous over short-baseline gradiometers for EC measurements of deep flaws. Using three standard HTS rf washer SQUID magnetometers with step-edge junctions, we implemented a multiplexed SQUID array. In conjunction with EC excitation and lock-in readout, measurements of aluminium aircraft samples were carried out in an unshielded laboratory environment. Newly developed software controls the continuous switching of the SQUIDs during the scan of the samples. The quasi-simultaneously obtained traces of the magnetometers are lock-in demodulated to yield in-phase and quadrature components, respectively. For EC excitation, a double-D excitation coil was selected. We performed measurements to localize an artificial crack of 20 mm length in an aluminium sheet with 0.6 mm thickness uncovered and covered by unflawed aluminium plates. In addition, the angle between crack and scanning direction was varied. Recorded signals of the SQUID array are presented and compared to signals received by scanning with just one and two magnetometers.