Published in

American Chemical Society, Environmental Science and Technology, 9(45), p. 3872-3879, 2011

DOI: 10.1021/es103894r

Links

Tools

Export citation

Search in Google Scholar

Squalene and Cholesterol in Dust from Danish Homes and Daycare Centers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Given the rate at which humans shed their skin (desquamation), skin flakes that contain squalene and cholesterol are anticipated to be major constituents of indoor dust. These compounds have been detected in more than 97% of the dust samples collected from 500 bedrooms and 151 daycare centers of young children living in Odense, Denmark. The mass fractions of squalene in dust were approximately log-normally distributed (homes: GM = 32 μg/g, GSD = 4.3; daycare centers: GM = 11.5 μg/g, GSD = 4.3); those of cholesterol displayed a poorer fit to such a distribution (homes: GM = 625 μg/g, GSD = 3.4; daycare centers: GM = 220 μg/g, GSD = 4.0). Correlations between squalene and cholesterol were weak (r = 0.22). Furthermore, the median squalene-to-cholesterol ratio in dust (~0.05) was more than an order of magnitude smaller than that in skin oil. This implies sources in addition to desquamation (e.g., cholesterol from cooking) coupled, perhaps, with a shorter indoor lifetime for squalene. Estimated values of squalene's vapor pressure, while uncertain, suggest meaningful redistribution from dust to other indoor compartments. We estimate that dust containing squalene at 60 μg/g would contribute about 4% to overall ozone removal by indoor surfaces. This is roughly comparable to the fraction of ozone removal that can be ascribed to reactions with indoor terpenes. Squalene containing dust is anticipated to contribute to the scavenging of ozone in all settings occupied by humans.