Published in

Springer, Journal of Materials Research, 12(21), p. 3187-3195, 2006

DOI: 10.1557/jmr.2006.0389

Links

Tools

Export citation

Search in Google Scholar

New nonhydrolytic route to synthesize crystalline BaTiO3 nanocrystals with surface capping ligands

Journal article published in 2006 by Zhuoying Chen ORCID, Limin Huang, Jiaqing He ORCID, Yimei Zhu, Stephen O'Brien
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new nonhydrolytic route for the preparation of well-crystallized size-tunable barium titanate (BaTiO3) nanocrystals capped with surface ligands is reported. Our approach involves: (i) synthesizing a “pseudo” bimetallic precursor, and (ii) combining the as-synthesized bimetallic precursor with a mixture of oleylamine with different surface coordinating ligands at 320 °C for crystallization and crystal growth. Different alcohols in the precursor synthesis and different carboxylic acids were used to study the effect of size and morphological control over the nanocrystals. Nanocrystals of barium titanate with diameters of 6–10 nm (capped with decanoic acid), 3–5 nm (capped with oleic acid), 10–20 nm (a nanoparticle and nanorod mixture capped with oleyl alcohol), and 2–3 nm (capped with oleyl alcohol) were synthesized, and can be easily dispersed into nonpolar solvents such as hexane or toluene. Techniques including x-ray diffraction, transmission electron microscopy, selected area electron diffraction, and high-resolution electron microscopy confirm the crystallinity and morphology of these as-synthesized nanocrystals.