Published in

Institute of Electrical and Electronics Engineers, IEEE Sensors Journal, 1(15), p. 417-424, 2015

DOI: 10.1109/jsen.2014.2339638

Links

Tools

Export citation

Search in Google Scholar

A Subcutaneous Biochip for Remote Monitoring of Human Metabolism: Packaging and Biocompatibility Assessment

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This paper represents the extended version of the conference paper "Developing highly-integrated subcutaneous biochips for remote monitoring of human metabolism" presented at the IEEE Sensors Conference 2012, and presents data on assembly, packaging and short term in vitro and in vivo biocompatibility evaluation of a fully implantable biosensor array. The device was realized integrating three building blocks: 1) a multielectrode platform; 2) an inductive coil; and 3) an integrated circuit. The entire system measures 2.2 mm x 2.2 mm x 15 mm. Corrosion of electronic components and leaking of potentially hazardous substances in the body is prevented with a conformal coating of Parylene C, while an outer package of medical grade silicone was employed to create a soft shell suitable for implantation. Biocompatibility experiments did not show in vitro cytotoxicity in the considered period of 7 days, while comparison between 7 and 30 days in vivo implantations showed significant reduction of the inflammatory response in time, suggesting normal host recovery.