Published in

American Association for Cancer Research, Cancer Research, 24(71), p. 7452-7462, 2011

DOI: 10.1158/0008-5472.can-11-1766

Links

Tools

Export citation

Search in Google Scholar

Peptide-Conjugated PAMAM Dendrimer as a Universal DNA Vaccine Platform to Target Antigen-Presenting Cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract DNA-based vaccines hold promise to outperform conventional antigen-based vaccines by virtue of many unique features. However, DNA vaccines have thus far fallen short of expectations, due in part to poor targeting of professional antigen-presenting cells (APC) and low immunogenicity. In this study, we describe a new platform for effective and selective delivery of DNA to APCs in vivo that offers intrinsic immune-enhancing characteristics. This platform is based on conjugation of fifth generation polyamidoamine (G5-PAMAM) dendrimers, a DNA-loading surface, with MHC class II–targeting peptides that can selectively deliver these dendrimers to APCs under conditions that enhance their immune stimulatory potency. DNA conjugated with this platform efficiently transfected murine and human APCs in vitro. Subcutaneous administration of DNA-peptide-dendrimer complexes in vivo preferentially transfected dendritic cells (DC) in the draining lymph nodes, promoted generation of high affinity T cells, and elicited rejection of established tumors. Taken together, our findings show how PAMAM dendrimer complexes can be used for high transfection efficiency and effective targeting of APCs in vivo, conferring properties essential to generate effective DNA vaccines. Cancer Res; 71(24); 7452–62. ©2011 AACR.