Dissemin is shutting down on January 1st, 2025

Published in

Optica, Optics Express, 15(20), p. 16639, 2012

DOI: 10.1364/oe.20.016639

Links

Tools

Export citation

Search in Google Scholar

Implantation damage effects on the Er^3+ luminescence in silica

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The possibility to control the room temperature Er3+ photoluminescence efficiency in silica is investigated in terms of the damage produced in Er-doped silica by implantations at different fluences with Xe or Au ions. These implantations are tailored to reproduce the same level of damage in Er-doped silica. The remarkable differences in terms of the photoluminescence intensity between Xe- and Au-irradiated samples allowed to decouple the detrimental effect of the implantation damage on the photoluminescence from the beneficial broad-band energy transfer process provided by molecule-like Au clusters formed upon thermal annealing. The evolution of the implantation damage is followed by photoluminescence and correlated to the local Er-site by x-ray absorption spectroscopy.