Published in

American Chemical Society, Journal of Organic Chemistry, 16(76), p. 6592-6603, 2011

DOI: 10.1021/jo200894d

Links

Tools

Export citation

Search in Google Scholar

Quaternary α,α-2-Oxoazepane α-Amino Acids: Synthesis from Ornithine-Derived β-Lactams and Incorporation into Model Dipeptides

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To explore further the chemistry of amino acid-derived β-lactams, their conversion to α,α-heterocyclic quaternary amino acid derivatives is investigated. The latter derivatives, containing 2-oxoazepane as the α,α-substituent, are synthesized by a simple Pd-C-catalyzed hydrogenolysis of Orn(Z)-derived 2-azetidinones. The rearrangement from four- to seven-membered lactam ring is driven by the key intramolecular opening of the 1-Boc-β-lactam, initiated by 7-exotrig ring closure from the NH(2) of the Orn side chain. The synthetic route is applied to the stereoselective preparation of enantiomerically pure 4-amino-3-methyl-2-oxoazepane-4-carboxylate derivatives, for which the structure and configuration is confirmed by X-ray diffraction. Molecular modeling and NMR experiments indicate that these quaternary amino acids are able to drive the adoption of β-turn secondary structures when incorporated in model dipeptide derivatives.