Links

Tools

Export citation

Search in Google Scholar

ECG-based Continuous Authentication System using Adaptive String Matching.

Proceedings article published in 2011 by David Pereira Coutinho, Ana L. N. Fred, Mário A. T. Figueiredo ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Conventional access control systems are typically based on a single time instant authentication. However, for high-security environments, continuous user verification is needed in order to robustly prevent fraudulent or unauthorized access. The electrocardiogram (ECG) is an emerging biometric modality with the following characteristics: (i) it does not require liveliness verification, (ii) there is strong evidence that it contains sufficient discriminative information to allow the identification of individuals from a large population, (iii) it allows continuous user verification. Recently, a string matching approach for ECG-based biometrics, using the Ziv-Merhav (ZM) cross parsing, was proposed. Building on previous work, and exploiting tools from data compression, this paper goes one step further, proposing a method for ECG-based continuous authentication. An adaptive way of using the ZM cross parsing is introduced. The use of the Lloyd-Max quantization is also introduced to improve the results with the string matching approach for ECG-based biometrics. Results on one-lead ECG real data are presented, acquired during a concentration task, from 19 healthy individuals.