Published in

Wiley, Environmental Toxicology, 11(31), p. 1307-1318, 2015

DOI: 10.1002/tox.22135

Links

Tools

Export citation

Search in Google Scholar

Comparing the genotoxicity of a potentially carcinogenic and a noncarcinogenic PAH, singly, and in binary combination, on peripheral blood cells of the European sea bass: COMPARATIVE GENOTOXICITY PAHS IN BINARY MIXTURES

Journal article published in 2015 by Marta Martins ORCID, Ana M. Ferreira, Maria H. Costa, Pedro M. Costa ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Research on the toxicological mechanisms of polycyclic aromatic hydrocarbons (PAHs) deemed carcinogenic and noncarcinogenic has mostly been developed for individual compounds even though, in the environment, PAHs invariably occur in mixtures. The present work aimed at understanding the interaction effects of two model PAHs, the potentially carcinogenic benzo[b]fluoranthene (B[b]F) and the noncarcinogenic phenanthrene (Phe) to a marine fish (the sea bass Dicentrarchus labrax). The study endeavoured an ecologically-relevant scenario with respect to concentrations and contaminant matrix, sediments, which are the main reservoirs of these substances in the environment, due to their hydrophobic nature. For the purpose, 28-day laboratorial bioassays with spiked sediments (with individual and combined PAHs at equitoxic concentrations) were conducted. Genotoxicity was determined in peripheral blood through the "Comet" assay and by scoring erythrocytic nuclear abnormalities (ENA). The results showed that exposure to either PAHs induced similar levels of DNA strand breaks, although without a clear dose- or time-response, likely due to the low concentrations of exposure and potential shits in PAH bioavailability during the assays. However, clastogenic/aneugenic lesions were only observed in fish exposed to B[b]F-spiked sediments. Conversely, the combination assays revealed a supra-additive effect especially at chromosome level, linked to concentrations of PAHs in water. A decrease in DNA-strand breakage was observed over time during all assays, revealing some ability of fish to cope with this DNA lesion. Overall, the findings show that low-moderate concentrations of sediment-bound mixed PAHs may significantly increase the hazard of mutagenesis even when the individual concentrations indicate low risk, especially considering that chromosome-level damage is unlikely to be repaired, leading to the fixation of DNA lesions upon prolonged exposures.