Published in

American Association of Immunologists, The Journal of Immunology, 6(184), p. 2839-2846, 2010

DOI: 10.4049/jimmunol.0903639

Links

Tools

Export citation

Search in Google Scholar

Contribution of Myelin Autoantigen Citrullination to T Cell Autoaggression in the Central Nervous System

Journal article published in 2010 by Antonio Carrillo-Vico ORCID, Melanie D. Leech, Stephen M. Anderton
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Breakdown in immunological self tolerance, leading to autoimmune diseases such as multiple sclerosis, might arise from immune recognition of self proteins that have undergone heightened posttranslational modification under pathophysiological conditions. A posttranslational modification of particular interest is the deimination of Arg to citrulline, catalyzed by peptidylarginyl deiminase (PAD) enzymes. As a CD4+ T cell-driven model of multiple sclerosis, we used experimental autoimmune encephalomyelitis (EAE) induced with the immunodominant 35–55 peptide of myelin oligodendrocyte glycoprotein (pMOG) in C57BL/6 mice to test whether citrullination of a T cell epitope can contribute to disease etiopathology. Immunization with an altered peptide ligand (APL) of pMOG with an Arg→citrulline conversion at a TCR contact (residue 41) led to the activation of two populations of APL-responsive T cells that either did, or did not cross-react with the native pMOG peptide. This APL could induce EAE. However, this reflected the activation of T cells that cross-reacted with the native pMOG epitope, because prior tolerization of these T cells using pMOG prevented APL-induced EAE. Using a passive transfer model, we found that T cells that responded specifically to the citrullinated form of pMOG were neither necessary, nor sufficient to initiate the EAE lesion. Nevertheless, these cells could provoke exacerbation of pathology if transferred into mice with ongoing EAE. The PAD2 and PAD4 enzymes were markedly upregulated in the inflamed CNS. Therefore, once inflammation is established, citrullination of target autoantigens can allow an expanded repertoire of T cells to contribute to CNS pathology.