Springer Verlag, Lecture Notes in Computer Science, p. 131-141
DOI: 10.1007/978-3-642-28151-8_13
Full text: Download
To study the complex interactions between cloud processes and the atmosphere, several atmospheric models have been coupled with detailed spectral cloud microphysics schemes. These schemes are computationally expensive, which limits their practical application. Additionally, our performance analysis of the model system COSMO-SPECS (atmospheric model of the Consortium for Small-scale Modeling coupled with SPECtral bin cloud microphysicS) shows a significant load imbalance due to the cloud model. To overcome this issue and enable dynamic load balancing, we propose the separation of the cloud scheme from the static partitioning of the atmospheric model. Using the framework FD4 (Four-Dimensional Distributed Dynamic Data structures), we show that this approach successfully eliminates the load imbalance and improves the scalability of the model system. We present a scalability analysis of the dynamic load balancing and coupling for two different supercomputers. The observed overhead is 6% on 1600 cores of an SGI Altix 4700 and less than 7% on a BlueGene/P system at 64Ki cores.