Published in

Elsevier, Aquatic Toxicology, 2(67), p. 127-142, 2004

DOI: 10.1016/j.aquatox.2003.11.006

Links

Tools

Export citation

Search in Google Scholar

Rapid assessment of polycyclic aromatic hydrocarbon (PAH) exposure in decapod crustaceans by fluorimetric analysis of urine and haemolymph

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and potentially harmful contaminants of the coastal and marine environment. Studies of their bioavailability, disposition and metabolism in marine organisms are therefore important for environmental monitoring purposes. Detecting PAH compounds in the biological fluids of marine organisms provides a measure of their environmental exposure to PAHs. In the present study, the shore crab Carcinus maenas was exposed to waterborne pyrene for 48h. Urine and haemolymph samples were analysed by direct fluorimetry utilising both fixed wavelength (FF) and synchronous scanning fluorescence (SFS) techniques. Samples from exposed crabs exhibited fluorescence due to 1-OH pyrene equivalents, whilst samples from control crabs did not. Levels of equivalents were exposure dependent. Urine was shown to be a more suitable medium for the analysis of PAH equivalents. In a separate experiment, depuration of pyrene equivalents in urine was monitored over time. Urinary levels reached a maximum 2-4 days after initial exposure and decreased steadily thereafter. No unchanged parent pyrene was detected in samples from exposed crabs. While fluorimetric techniques could discriminate between 1-OH pyrene equivalents and parent pyrene, identification of specific metabolites was only possible with HPLC/F analysis. This revealed crabs had bio-transformed pyrene into 3 major conjugates of 1-OH pyrene, which were excreted in the urine. While such biotransformation of PAH is well documented in fish and several crustaceans, this is the first study to use direct fluorimetry to detect PAH equivalents in exposed crustacean urine. Fluorimetric results correlated well with those obtained by HPLC/F and ELISA techniques. The technique has great potential as a rapid, inexpensive and non-destructive technique for field biomonitoring of PAH exposure in crustaceans.