Published in

Elsevier, Comparative Biochemistry and Physiology - Part C: Toxicology and Pharmacology, 3-4(142), p. 293-300, 2006

DOI: 10.1016/j.cbpc.2005.10.017

Links

Tools

Export citation

Search in Google Scholar

Antioxidant properties of the mucus secreted by Laeonereis acuta (Polychaeta, Nereididae): A defense against environmental pro-oxidants?

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Polychaeta species like Laeonereis acuta (Nereididae) usually secrete great amounts of mucus that wrap the animal inside. Taking into account that fungi action in the sediment and UV radiation acting on dissolved organic matter in the water produces reactive oxygen species (ROS) like hydrogen peroxide (H(2)O(2)), it was considered that the mucus secretion could represent an antioxidant defense against environmental ROS. Antioxidant enzymes (catalase-CAT; superoxide dismutase-SOD; glutathione peroxidase-GPx and glutathione-S-transferase-GST) and total antioxidant capacity (TOSC) were determined in worms and mucus secretion. Higher (p<0.05) CAT, GPx and TOSC values were registered in mucus samples respect worms, SOD activity was similar (p>0.05) in both kind of samples, and absence of GST activity was observed in mucus samples, suggesting absence of catalyzed phase II reactions. In assays conducted with hepatoma cell lines exposed to H(2)O(2), it was verified that: (1) mucus co-exposure significantly (p<0.05) lowered DNA damage induced by H(2)O(2); (2) ROS production was significantly (p<0.05) reduced when cells were exposed simultaneously with mucus samples and H(2)O(2) respect H(2)O(2) alone. It can be concluded that the mucus production contributes substantially to the antioxidant defense system of the worm against environmental ROS through the interception or degradation of H(2)O(2), peroxyl and hydroxyl radicals.