Published in

Elsevier, Toxicology in Vitro, 2(26), p. 197-205

DOI: 10.1016/j.tiv.2011.11.013

Links

Tools

Export citation

Search in Google Scholar

Differential involvement of mitochondrial dysfunction, cytochrome P450 activity, and active transport in the toxicity of structurally related NSAIDs

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of pain and inflammation. However, this group of drugs is associated with serious adverse drug reactions. Previously, we studied the mechanisms underlying toxicity of the NSAID diclofenac using Saccharomycescerevisiae as model system. We identified the involvement of several mitochondrial proteins, a transporter and cytochrome P450 activity in diclofenac toxicity. In this study, we investigated if these processes are also involved in the toxicity of other NSAIDs. We divided the NSAIDs into three classes based on their toxicity mechanisms. Class I consists of diclofenac, indomethacin and ketoprofen. Mitochondrial respiration and reactive oxygen species (ROS) play a major role in the toxicity of this class. Metabolism by cytochrome P450s further increases their toxicity, while ABC-transporters decrease the toxicity. Mitochondria and oxidative metabolism also contribute to toxicity of class II drugs ibuprofen and naproxen, but another cellular target dominates their toxicity. Interestingly, ibuprofen was the only NSAID that was unable to induce upregulation of the multidrug resistance response. The class III NSAIDs sulindac, ketorolac and zomepirac were relatively non-toxic in yeast. In conclusion, we demonstrate the use of yeast to investigate the mechanisms underlying the toxicity of structurally related drugs.