Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Neurocomputing, 4-6(71), p. 776-786

DOI: 10.1016/j.neucom.2007.10.007

Links

Tools

Export citation

Search in Google Scholar

Parametric improvement of lateral interaction in accumulative computation in motion-based segmentation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Segmentation of moving objects is an essential component of any vision system. However, its accomplishment is hard due to some challenges such as the occlusion treatment or the detection of objects with deformable appearance. In this paper an artificial neuronal network approach for moving object segmentation, called lateral interaction in accumulative computation (LIAC), which uses accumulative computation and recurrent lateral interaction is revisited. Although the results reported for this approach so far may be considered relevant, the problems faced each time (environment, objects of interest, etc.) make that the system outcome varies. Hence, our aim is to improve segmentation provided by LIAC in a double sense: by removing the detected objects not matching some size or compactness constraints, and by learning suitable parameters that improve the segmentation behavior through a genetic algorithm.