Published in

American Chemical Society, ACS Nano, 10(8), p. 10743-10755, 2014

DOI: 10.1021/nn504481r

Links

Tools

Export citation

Search in Google Scholar

Tin Disulfide-An Emerging Layered Metal Dichalcogenide Semiconductor: Materials Properties and Device Characteristics

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Layered metal dichalcogenides have attracted significant interest as a family of single- and few-layer materials that show new physics and are of interest for device applications. Here, we report a comprehensive characterization of the properties of tin disulfide (SnS2), an emerging semiconducting metal dichalcogenide, down to the monolayer limit. Using flakes exfoliated from layered bulk crystals, we establish the characteristics of single- and few-layer SnS2 in optical and atomic force microscopy, Raman spectroscopy and transmission electron microscopy. Band structure measurements in conjunction with ab-initio calculations and photoluminescence spectroscopy show that SnS2 is an indirect bandgap semiconductor over the entire thickness range from bulk to single-layer. Field effect transport in SnS2 supported by SiO2/Si suggests predominant scattering by centers at the support interface. Ultrathin transistors show on-off current ratios > 106, as well as carrier mobilities up to 230 cm2/Vs, minimal hysteresis, and near-ideal sub-threshold swing for devices screened by a high-k (de-ionized water) top gate. SnS2 transistors are efficient photodetectors but, similar to other metal dichalcogenides, show a relatively slow response to pulsed irradiation, likely due to adsorbate-induced long-lived extrinsic trap states.