Published in

Elsevier, Structure, 12(20), p. 2038-2047, 2012

DOI: 10.1016/j.str.2012.09.014

Links

Tools

Export citation

Search in Google Scholar

Crystal Structure of a Ba2+-Bound Gating Ring Reveals Elementary Steps in RCK Domain Activation

Journal article published in 2012 by Frank J. Smith, Victor P. T. Pau ORCID, Gino Cingolani, Brad S. Rothberg ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

RCK domains control activity of a variety of K(+) channels and transporters through binding of cytoplasmic ligands. To gain insight toward mechanisms of RCK domain activation, we solved the structure of the RCK domain from the Ca(2+)-gated K(+) channel, MthK, bound with Ba(2+), at 3.1 Å resolution. The Ba(2+)-bound RCK domain was assembled as an octameric gating ring, as observed in structures of the full-length MthK channel, and shows Ba(2+) bound at several positions. One of the Ba(2+) sites, termed C1, overlaps with a known Ca(2+)-activation site, determined by residues D184 and E210. Functionally, Ba(2+) can activate reconstituted MthK channels as observed in electrophysiological recordings, whereas Mg(2+) (up to 100 mM) was ineffective. Ba(2+) activation was abolished by the mutation D184N, suggesting that Ba(2+) activates primarily through the C1 site. Our results suggest a working hypothesis for a sequence of ligand-dependent conformational changes that may underlie RCK domain activation and channel gating.