Published in

American Chemical Society, Journal of Natural Products, 10(60), p. 959-966, 1997

DOI: 10.1021/np9700578

Links

Tools

Export citation

Search in Google Scholar

Isolation, Structure Elucidation, and Biological Activity of the Steroid Oligoglycosides and Polyhydroxysteroids from the Antarctic StarfishAcodontaster conspicuus

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A total of 19 steroids, of which 13 steroidal oligoglycosides (nine new and four known) and six polyhydroxylated steroids (four new and two known), has been isolated from the Antarctic starfish Acodontaster conspicuus. The mixture is dominated by glycosides composed of steroidal aglycons having the hydroxyl groups typically disposed on one side of the tetracyclic nucleus, i.e., 3 beta,4 beta,6 alpha,8,15 beta-, with some having a sulfate at C-6, and differing in the side chains and/or in the disaccharide moieties that are usually attached at C-26, with some at C-28 and C-29. Those compounds are accompanied by minute amounts of glycosides with a delta 8(14)-double bond in the steroid, which is a structural feature not previously found among polyhydroxysteroids derived from starfish. Small amounts of six related unglycosidated polyhydroxysteroids and three higher-molecular-weight asterosaponins complete the composition of the mixture. The structures of the new compounds were determined by interpretation of their spectral data and by comparison with spectral data of known compounds. Eighteen of these compounds were evaluated for their ability to inhibit growth in Antarctic marine bacteria isolated from either the water column or the surfaces of benthic marine invertebrates. Of these compounds, 50% were active against at least one Antarctic marine bacterium. This suggests that these compounds may play an important role in deterring microbial fouling.