Published in

Elsevier, Biophysical Chemistry, 2-3(69), p. 153-160, 1997

DOI: 10.1016/s0301-4622(97)00088-4

Links

Tools

Export citation

Search in Google Scholar

The role of DNA bending in Cro protein-DNA interactions

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Binding energy of DNA-Cro protein complexes is analyzed in terms of DNA elasticity, using a sequence-dependent anisotropic bendability (SDAB) model of DNA, developed recently [M.M. Gromiha, M.G. Munteanu, A. Gabrielian and S. Pongor, J. Biol. Phys. 22(1996) 227-243.]. The protein is considered to bind aspecifically to DNA that reduces the freedom of movement in the DNA molecule. In cognate DNA, the Cro protein moves on to form specific interactions and bends DNA. A comparison of the experimental data [Y. Takeda, A. Sarai and V.M. Rivera, Proc. Natl. Acad. Sci. U.S.A. 86 (1989) 439-443.] with the calculated DNA stiffness data shows that delta G of the complex formation increases with stiffness of the ligand when the interactions are nonspecific ones, while an opposite trend is observed for specific binding. Both of these trends are in agreement with our approach using the SDAB model. A decomposition of the energy terms suggests that binding energy in the nonspecific case is used maily to compensate the free energy changes due to entropy lost by DNA, while the energy of specific interactions provide enough energy both to bend the DNA molecule and to change the conformation of the Cro protein upon ligand binding.