Published in

American Institute of Physics, Applied Physics Letters, 1(108), p. 012407

DOI: 10.1063/1.4939451

Links

Tools

Export citation

Search in Google Scholar

Millisecond direct measurement of the magnetocaloric effect of a Fe2P-based compound by the mirage effect

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We present direct measurements of the magnetocaloric effect on a Fe2P-based compound induced by a milliseconds pulsed magnetic field of 1 T to test their possible use in high frequency (up to 100 Hz) thermomagnetic cycles. The reported measurements were performed with an innovative and versatile non-contact set up based on the mirage effect. The adiabatic temperature change of a MnFeP0.45As0.55 sample is presented and compared with measurements performed varying the same magnetic field in a time interval of 1 s and 100 ms. These results demonstrate the absence of kinetic constraints in the first-order phase transition of this sample induced on the milliseconds time scale. The study of the materials' response to millisecond magnetic field pulses represents a fundamental test for the development of more powerful and efficient magnetic refrigerators.