Published in

American Society of Hematology, Blood, 14(114), p. 2900-2908, 2009

DOI: 10.1182/blood-2009-01-200733

Links

Tools

Export citation

Search in Google Scholar

Wiskott-Aldrich syndrome protein is an effector of Kit signaling

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The pleiotropic receptor tyrosine kinase Kit can provide cytoskeletal signals that define cell shape, positioning, and migration, but the underlying mechanisms are less well understood. In this study, we provide evidence that Kit signals through Wiskott-Aldrich syndrome protein (WASP), the central hematopoietic actin nucleation-promoting factor and regulator of the cytoskeleton. Kit ligand (KL) stimulation resulted in transient tyrosine phosphorylation of WASP, as well as interacting proteins WASP-interacting protein and Arp2/3. KL-induced filopodia in bone marrow-derived mast cells (BMMCs) were significantly decreased in number and size in the absence of WASP. KL-dependent regulation of intracellular Ca(2+) levels was aberrant in WASP-deficient BMMCs. When BMMCs were derived from WASP-heterozygous female mice using KL as a growth factor, the cultures eventually developed from a mixture of WASP-positive and -negative populations into a homogenous WASP-positive culture derived from the WASP-positive progenitors. Thus, WASP expression conferred a selective advantage to the development of Kit-dependent hematopoiesis consistent with the selective advantage of WASP-positive hematopoietic cells observed in WAS-heterozygous female humans. Finally, KL-mediated gene expression in wild-type and WASP-deficient BMMCs was compared and revealed that approximately 30% of all Kit-induced changes were WASP dependent. The results indicate that Kit signaling through WASP is necessary for normal Kit-mediated filopodia formation, cell survival, and gene expression, and provide new insight into the mechanism in which WASP exerts a strong selective pressure in hematopoiesis.