Published in

Society for Neuroscience, Journal of Neuroscience, 24(20), p. 9086-9095, 2000

DOI: 10.1523/jneurosci.20-24-09086.2000

Links

Tools

Export citation

Search in Google Scholar

Agrin controls synaptic differentiation in hippocampal neurons.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Agrin controls the formation of the neuromuscular junction. Whether it regulates the differentiation of other types of synapses remains unclear. Therefore, we have studied the role of agrin in cultured hippocampal neurons. Synaptogenesis was severely compromised when agrin expression or function was suppressed by antisense oligonucleotides and specific antibodies. The effects of antisense oligonucleotides were found to be highly specific because they were reversed by adding recombinant agrin and could not be detected in cultures from agrin-deficient animals. Interestingly, the few synapses formed in reduced agrin conditions displayed diminished vesicular turnover, despite a normal appearance at the EM level. Thus, our results demonstrate the necessity of agrin for synaptogenesis in hippocampal neurons.