Published in

Elsevier, Journal of Biological Chemistry, 37(278), p. 34882-34889, 2003

DOI: 10.1074/jbc.m300825200

Links

Tools

Export citation

Search in Google Scholar

Elucidation of Primary Structure Elements Controlling Early Amyloid β-Protein Oligomerization

Journal article published in 2003 by Gal Bitan, Sabrina S. Vollers ORCID, David B. Teplow
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Assembly of monomeric amyloid beta-protein (A beta) into oligomeric structures is an important pathogenetic feature of Alzheimer's disease. The oligomer size distributions of aggregate-free, low molecular weight A beta 40 and A beta 42 can be assessed quantitatively using the technique of photo-induced cross-linking of unmodified proteins. This approach revealed that low molecular weight A beta 40 is a mixture of monomer, dimer, trimer, and tetramer, in rapid equilibrium, whereas low molecular weight A beta 42 preferentially exists as pentamer/hexamer units (paranuclei), which self-associate to form larger oligomers. Here, photo-induced cross-linking of unmodified proteins was used to evaluate systematically the oligomerization of 34 physiologically relevant A beta alloforms, including those containing familial Alzheimer's disease-linked amino acid substitutions, naturally occurring N-terminal truncations, and modifications altering the charge, the hydrophobicity, or the conformation of the peptide. The most important structural feature controlling early oligomerization was the length of the C terminus. Specifically, the side-chain of residue 41 in A beta 42 was important both for effective formation of paranuclei and for self-association of paranuclei into larger oligomers. The side-chain of residue 42, and the C-terminal carboxyl group, affected paranucleus self-association. A beta 40 oligomerization was particularly sensitive to substitutions of Glu22 or Asp23 and to truncation of the N terminus, but not to substitutions of Phe19 or Ala21. A beta 42 oligomerization, in contrast, was largely unaffected by substitutions at positions 22 or 23 or by N-terminal truncations, but was affected significantly by substitutions of Phe19 or Ala21. These results reveal how specific regions and residues control A beta oligomerization and show that these controlling elements differ between A beta 40 and A beta 42.