Published in

American Chemical Society, Journal of Medicinal Chemistry, 4(51), p. 842-851, 2008

DOI: 10.1021/jm701494b

Links

Tools

Export citation

Search in Google Scholar

Structure-Based Virtual Screening for the Discovery of Natural Inhibitors for Human Rhinovirus Coat Protein

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Inhibitors of the human rhinovirus (HRV) coat protein are promising candidates to treat and prevent a number of upper respiratory diseases. The aim of this study was to find antiviral compounds from nature, focusing on the HRV coat protein. Through computational structure-based screening of an in-house 3D database containing 9676 individual plant metabolites from ancient herbal medicines, combined with knowledge from traditional use, we selected sesquiterpene coumarins from the gum resin asafetida as promising natural products. Chromatographic separation steps resulted in the isolation of microlobidene (1), farnesiferol C (2), farnesiferol B (3), and kellerin (4). Determination of the inhibition of the HRV-induced cytopathic effect for serotypes 1A, 2, 14, and 16 revealed a dose-dependent and selective antirhinoviral activity against serotype 2 for asafetida (IC50 = 11.0 microg/mL) and its virtually predicted constituents 2 (IC50 = 2.5 microM) and 3 (IC50 = 2.6 microM). Modeling studies helped to rationalize the retrieved results.