Published in

Elsevier, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 11(267), p. 1899-1903

DOI: 10.1016/j.nimb.2009.04.006

Links

Tools

Export citation

Search in Google Scholar

The (3He,tf) as a surrogate reaction to determine (n,f) cross sections in the 10–20MeV energy range

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The surrogate reaction 238U(3He, tf) is used to determine the 237Np(n, f) cross section indirectly over an equivalent neutron energy range from 10 to 20 MeV. A self-supporting ∼761 μg/cm2 metallic 238U foil was bombarded with a 42 MeV 3He2+ beam from the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory (LBNL). Outgoing charged particles and fission fragments were identified using the Silicon Telescope Array for Reaction Studies (STARS) consisted of two 140 μm and one 1000 μm Micron S2 type silicon detectors. The 237Np(n, f) cross sections, determined indirectly, were compared with the 237Np(n, f) cross section data from direct measurements, the Evaluated Nuclear Data File (ENDF/B-VII.0), and the Japanese Evaluated Nuclear Data Library (JENDL 3.3) and found to closely follow those datasets. Use of the (3He, tf) reaction as a surrogate to extract (n, f) cross sections in the 10–20 MeV equivalent neutron energy range is found to be suitable.