Published in

American Chemical Society, ACS Applied Materials and Interfaces, 1(6), p. 333-339, 2013

DOI: 10.1021/am404381e

Links

Tools

Export citation

Search in Google Scholar

Carrier Lifetime Extension via the Incorporation of Robust Hole/Electron Blocking Layers in Bulk Heterojunction Polymer Solar Cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report the achievement of a power conversion efficiency (PCE) improvement in P3HT:PCBM-based bulk-heterojunction type polymer solar cells using photocrosslinked P3HT (c-P3HT) as the hole extraction layer and titanium oxide nanoparticles (TiO2) as the electron extraction layer. Devices prepared with a 20 nm thick c-P3HT layer showed an improved PCE of 3.4% compared to devices prepared without the c-P3HT layer (PCE = 3.0%). This improvement was attributed to an extension in the carrier lifetime and an enhancement in the carrier mobility. The incorporation of the c-P3HT layer lengthened (by more than a factor of 2) the carrier lifetime and increased (by a factor of 5) the hole mobility. These results suggest that the c-P3HT layer not only prevented non-geminate recombination, but it also improved carrier transport. The PCE was further improved to 4.0% through the insertion of a TiO2 layer that acted as an effective hole-blocking layer at the interface between the photoactive layer and the cathode. This work demonstrates that the incorporation of solution-processable hole and electron extraction layers offers an effective means for preventing nongeminate recombination at the interfaces between a photoactive layer and an electrode in bulk-heterojunction-type polymer solar cells.