Published in

Elsevier, Journal of Biological Chemistry, 40(271), p. 24365-24370, 1996

DOI: 10.1074/jbc.271.40.24365

Links

Tools

Export citation

Search in Google Scholar

Expression and Functional Analysis of Water Channels in a Stably AQP2-transfected Human Collecting Duct Cell Line

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this study, we describe the establishment of a stably transfected epithelial cell line with the cDNA for the rat aquaporin 2 (AQP2). To this end, we used a human cell line (HCD) derived from the cortical collecting duct and having characteristics of principal cells (Prié, D., Friedlander, G., Coureau, C., Vandewalle, A., Cassigena, R., and Ronco, P. M. (1995) Kidney Int. 47, 1310-1318). The HCD cells were first screened for the constitutive expression of AQPs. By Western blot analysis, we found a low expression of immunoreactive AQP2 and AQP4 proteins. In contrast, transfected cells (clone CD8) probed with AQP2 antiserum expressed an intense 29-kDa protein on immunoblot in addition to a broad band between 35-45 kDa corresponding to the glycosylated form of the protein, indicating that full maturity of the protein is attained in transfected cells. Immunofluorescence demonstrated that AQP2 was located in intracellular vesicles. After vasopressin stimulation, the staining redistributed from an intracellular site to the apical pole of the cells, an effect similar to that described on collecting duct principal cells in vivo (Sabolic, I., Katsura, T., Verbavatz, J. M., and Brown, D. (1995) J. Membr. Biol. 143, 165-175) and in perfused tubules (Nielsen, S., Chou, C. L., Marples, D., Christensen, E. I., Kishore, B. K., and Knepper, M. A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 1013-1017). The redistribution of AQP2 in CD8 cells was accompanied by an approximately 6-fold increase in osmotic water permeability coefficient (Pf), which was inhibited by 0.3 m HgCl2. These data indicate that functional vasopressin-sensitive water channels are expressed in transfected cells. The stably transfected cells represent a suitable model to unravel by direct experimental approach the intracellular signals involved in the translocation of AQP2 to the apical plasma membrane in the presence of vasopressin.