Published in

Highlights in Theoretical Chemistry, p. 19-33

DOI: 10.1007/978-3-642-34450-3_3

Springer Verlag, Theoretical Chemistry Accounts: Theory, Computation, and Modeling, 3(131)

DOI: 10.1007/s00214-012-1161-7

Links

Tools

Export citation

Search in Google Scholar

Optimization of the explicit polarization (X-Pol) potential using a hybrid density functional

Journal article published in 2012 by Jaebeom Han, Donald G. Truhlar ORCID, Jiali Gao
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The explicit polarization (X-Pol) method is a self-consistent fragment-based electronic structure theory in which molecular orbitals are block-localized within fragments of a cluster, macromolecule, or condensed-phase system. To account for short-range exchange repulsion and long-range dispersion interactions, we have incorporated a pairwise, empirical potential, in the form of Lennard-Jones terms, into the X-Pol effective Hamiltonian. In the present study, the X-Pol potential is constructed using the B3LYP hybrid density functional with the 6-31G(d) basis set to treat interacting fragments, and the Lennard-Jones parameters have been optimized on a dataset consisting of 105 bimolecular complexes. It is shown that the X-Pol potential can be optimized to provide a good description of hydrogen bonding interactions; the root mean square deviation of the computed binding energies from full (i.e., nonfragmental) CCSD(T)/aug-cc-pVDZ results is 0.8 kcal/mol, and the calculated hydrogen bond distances have an average deviation of about 0.1 Å from those obtained by full B3LYP/aug-cc-pVDZ optimizations.