Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Proceedings of the Combustion Institute, 1(35), p. 589-596, 2015

DOI: 10.1016/j.proci.2014.06.071

Links

Tools

Export citation

Search in Google Scholar

Optimization of a hydrogen combustion mechanism using both direct and indirect measurements

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The Kéromnès et al. (2013) mechanism for hydrogen combustion has been optimized using a large set of indirect experimental data, consisting of ignition measurements in shock tubes (566 datapoints in 43 datasets) and rapid compression machines (219/19), and flame velocity measurements (364/59), covering wide ranges of temperature (800 K–2300 K), pressure (0.1 bar–65 bar) and equivalence ratio (φ = 0.2–5.0). According to the sensitivity analysis carried out at each experimental datapoint, 30 Arrhenius parameters and 3 third body collision efficiency parameters of 11 elementary reactions could be optimized using these experimental data. 1749 directly measured rate coefficient values in 56 datasets belonging to the 11 reaction steps were also utilized. Prior uncertainty ranges of the rate coefficients were determined from literature data. Mechanism optimization has led to a new hydrogen combustion mechanism, a set of newly recommended rate parameters with their covariance matrix, and temperature-dependent posterior uncertainty ranges of the rate coefficients. The optimized mechanism generated here was tested together with 13 recent hydrogen combustion mechanisms and proved to be the best one.