Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 16(109), p. 7894-7899, 2005

DOI: 10.1021/jp050778c

Links

Tools

Export citation

Search in Google Scholar

Propene Adsorption Sites in Zeolite ITQ-12: A Combined Synchrotron X-ray and Neutron Diffraction Study

Journal article published in 2005 by Xiaobo Yang, Brian H. Toby ORCID, Miguel A. Camblor ORCID, Yongjae Lee, David H. Olson
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The adsorption site of propene in the small-pore, pure silica zeolite [Si24O48]-ITW-ITQ-12 has been characterized via Rietveld refinement of the crystal structure of propene-loaded ITQ-12 on the basis of synchrotron X-ray and neutron diffraction data taken at 298 K. The structure can be described with a monoclinic unit cell having Cm symmetry and unit cell parameters a = 10.436 angstroms, b = 15.018 angstroms, c = 8.855 angstroms, beta = 105.74 degrees, and volume = 1335.9 angstroms3. Four-fold disordered adsorption sites that are nearly equivalent relative to the cage's 2/m pseudosymmetry are located near the center of each ellipsoidally shaped [4(4)5(4)6(4)8(4)] cage. At this site, the adsorbed propene molecule lies on a plane close and approximately parallel to the equatorial plane of the cage and is aligned with its methylene group pointing toward the pore's eight-ring window. The refined propene concentration, 1.8 per unit cell content, is close to one propene molecule per [4(4)5(4)6(4)8(4)] cage and the amount observed in adsorption experiments at 298 K and 1 atm propene partial pressure.