Published in

American Association for Cancer Research, Clinical Cancer Research, 6(11), p. 2132-2140, 2005

DOI: 10.1158/1078-0432.ccr-04-2133

Links

Tools

Export citation

Search in Google Scholar

Transfer of the sFLT-1 Gene in Morris Hepatoma Results in Decreased Growth and Perfusion and Induction of Genes Associated with Stress Response

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: Inhibition of tumor angiogenesis is emerging as a promising target in the treatment of malignancies. Therefore, monitoring of antiangiogenic approaches with functional imaging and histomorphometrical analyses are desirable to evaluate the biological effects caused by this treatment modality. Experimental Design: Using a bicistronic retroviral vector for transfer of the soluble receptor for the vascular endothelial growth factor (sFLT) hepatoma (MH3924A) cell lines with sFLT expression were generated. In human umbilical vein endothelial cells cultured with conditioned medium of sFLT-expressing hepatoma cells, the inhibitory action of secreted sFLT was determined using a Coulter counter and a thymidine incorporation assay. Furthermore, in vivo experiments were done to measure the effects on tumor growth and perfusion. Finally, the tumors were examined by immunohistochemistry (including computer-assisted morphometry) and DNA chip analysis. Results: Stable sFLT-expressing hepatoma cells inhibited endothelial cell proliferation in vitro. In vivo, growth and perfusion, as measured by H215O positron emission tomography, were reduced in genetically modified tumors. However, the immunohistochemically quantified microvascularization and macrovascularization, as indicated by CD31- and α-actin-positive area, revealed no significant changes, whereas the number of apoptotic cells was increased in sFLT-expressing tumors, although not significantly. DNA chip analysis of tumors with gene transfer showed an increase of genes related to apoptosis, signal transduction, and oxidative stress. Conclusion: Our results suggest that sFLT expression inhibits tumor growth and perfusion and enhances expression of apoptosis-related genes in this model. Enhanced expression of genes for signal transduction, stress, and metabolism indicates tumor defense reactions.