Published in

Wiley, Advanced Healthcare Materials, 9(2), p. 1181-1181, 2013

DOI: 10.1002/adhm.201370045

Wiley, Advanced Healthcare Materials, 9(2), p. 1267-1276, 2013

DOI: 10.1002/adhm.201200389

Links

Tools

Export citation

Search in Google Scholar

Targeted and pH-Responsive Delivery of Doxorubicin to Cancer Cells Using Multifunctional Dendrimer-Modified Multi-Walled Carbon Nanotubes

Journal article published in 2013 by Shihui Wen, Hui Liu, Hongdong Cai, Mingwu Shen, Xiangyang Shi ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report the use of multifunctional dendrimer-modified multi-walled carbon nanotubes (MWCNTs) for targeted and pH-responsive delivery of doxorubicin (DOX) into cancer cells. In this study, amine-terminated generation 5 poly(amidoamine) (PAMAM) dendrimers modified with fluorescein isothiocyanate (FI) and folic acid (FA) were covalently linked to acid-treated MWCNTs, followed by acetylation of the remaining dendrimer terminal amines to neutralize the positive surface potential. The formed multifunctional MWCNTs (MWCNT/G5.NHAc-FI-FA) were characterized via different techniques. Then, the MWCNT/G5.NHAc-FI-FA was used to load DOX for targeted and pH-responsive delivery to cancer cells overexpressing high-affinity folic acid receptors (FAR). We showed that the MWCNT/G5.NHAc-FI-FA enabled a high drug payload and encapsulation efficiency both up to 97.8% and the formed DOX/MWCNT/G5.NHAc-FI-FA complexes displayed a pH-responsive release property with fast DOX release under acidic environment and slow release at physiological pH conditions. Importantly, the DOX/MWCNT/G5.NHAc-FI-FA complexes displayed effective therapeutic efficacy, similar to that of free DOX, and were able to target to cancer cells overexpressing high-affinity FAR and effectively inhibit the growth of the cancer cells. The synthesized multifunctional dendrimer-modified MWCNTs may be used as a targeted and pH-responsive delivery system for targeting therapy of different types of cancer cells.