Published in

American Physical Society, Physical review B, 16(77), 2008

DOI: 10.1103/physrevb.77.165341

Links

Tools

Export citation

Search in Google Scholar

Quantum and classical multiple-scattering effects in the spin dynamics of cavity polaritons

Journal article published in 2007 by M. M. Glazov ORCID, L. E. Golub
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The transport properties of exciton-polaritons are studied with allowance for their polarization. Both classical multiple scattering effects and quantum effects such as weak localization are taken into account in the framework of a generalized kinetic equation. The longitudinal-transverse (TE-TM) splitting of polariton states which plays a role that is analogous to the spin-orbit splitting in electron systems is taken into account. The developed formalism is applied to calculate the particle and spin diffusion coefficients of exciton-polaritons, spin relaxation rates, and the polarization conversion efficiency under the conditions of the optical spin Hall effect. In contrast to the electron systems, a strong spin splitting does not lead to the antilocalization behavior of the particle diffusion coefficient, while quantum corrections to spin diffusion and polarization conversion can be both negative and positive depending on the spin splitting value.