Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (664), 2001

DOI: 10.1557/proc-664-a18.6

Institute of Electrical and Electronics Engineers, IEEE Sensors Journal, 4(2), p. 336-341, 2002

DOI: 10.1109/jsen.2002.804037

Links

Tools

Export citation

Search in Google Scholar

Piezoresistive Sensors on Plastic Substrates Using Doped Microcrystalline Silicon

Journal article published in 2001 by Pedro Alpuim ORCID, Virginia Chu, Joao Pedro Conde
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The piezoresistive behavior of n-type and p-type microcrystalline silicon films deposited on polyethylene terephthalate plastic substrates by hot-wire, and radio-frequency, plasma-enhanced chemical vapor deposition, at a substrate temperature of 100°C, is studied. The crystallite size was 10 nm for hot-wire films and 6.5 nm for radio-frequency films and the crystalline fraction varied between 50 to 80%. A four-point bending jig allowed the application of positive and negative strains in the films. Repeated measurements of the relative changes in the resistance of the samples during the strained condition showed reversible behavior, with p-type microcrystal line films having positive gauge factor in the range from 25 to 30 and n-type μc-Si:H films having negative values of gauge factor from -40 to -10. The induced strain in the films varied in the interval between 0 and ±0.3%. The films were used in the as-deposited size (50 mm × 10 mm) as sensors, utilizing their piezoresistive properties to map the contour of an acrylic model with the shape of an Archimedes' spiral. Micron-sized devices were patterned and used to map the shape of the same model.