Published in

Elsevier, Physics and Chemistry of the Earth, Parts A/B/C, (67-69), p. 55-63

DOI: 10.1016/j.pce.2013.09.013

Links

Tools

Export citation

Search in Google Scholar

Validation of remotely sensed rainfall over major climatic regions in Northeast Tanzania

Journal article published in 2014 by Fredrick Mashingia, Felix Mtalo, Michael Bruen ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Increase in population has resulted in pressure for more land and water use for food security in Northeast Tanzania. This calls for proper understanding of spatial-temporal variations of quality and quantity of water to ensure sustainable management. The number of hydro-meteorological stations such as rainfall stations and flow measuring stations has not increased and even the functioning of the existing ones is deteriorating. Satellite rainfall estimates (SRE) are being used widely in place of gauge observations or to supplement gauge observations. However, rigorous validation is necessary to have some level of confidence in using the satellite products for different applications. This paper discusses the results of application of SRE over a data scarce tropical complex region in Northeast Tanzania. We selected river catchments found in two different climatological zones: the inland region mountains (i.e. Kikuletwa and Ruvu basins) and the coastal region mountains (i.e. Mkomazi, Luengera and Zigi basins), characterized by semi arid, sub-humid to humid tropical climate. Thus, the validation sites were ideal for testing the different SRE products. In this study, we evaluated two gauge corrected high resolution SRE products which combine both infrared and passive-microwave estimates; the National Oceanographic and Atmospheric Administration Climate Prediction Center (NOAA-CPC) African Rainfall Estimation (RFE2) and the Tropical Rainfall Measuring Mission product 3B42 (TRMM-3B42) using station network.