Published in

American Chemical Society, ACS Nano, 7(4), p. 4190-4196, 2010

DOI: 10.1021/nn1008337

Links

Tools

Export citation

Search in Google Scholar

Oxygen-Induced Surface Reconstruction of SrRuO<sub>3</sub> and Its Effect on the BaTiO<sub>3</sub> Interface

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Atomically engineered oxide multilayers and superlattices display unique properties responsive to the electronic and atomic structures of the interfaces. We have followed the growth of ferroelectric BaTiO3 on SrRuO3 electrode with in situ atomic scale analysis of the surface structure at each stage. An oxygen-induced surface reconstruction of SrRuO3 leads to formation of SrO rows spaced at twice the bulk periodicity. This reconstruction modifies the structure of the first BaTiO3 layers grown subsequently, including intermixing observed with cross-section spectroscopy. These observations reveal that this common oxide interface is much more interesting than previously reported and provide a paradigm for oxygen engineering of oxide structure at an interface.