Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Glia, 4(49), p. 492-500, 2004

DOI: 10.1002/glia.20135

Links

Tools

Export citation

Search in Google Scholar

Dystroglycan is involved in laminin‐1‐stimulated motility of Müller glial cells: Combined velocity and directionality analysis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We investigate the role of dystroglycan, a major laminin-1 receptor and central member of the dystrophin-glycoprotein complex, in the laminin-1 induced motility of cultured Muller glial cells. Binding of laminin-1 to dystroglycan was prevented by IIH6, a function-blocking monoclonal antibody against alpha-dystroglycan. As an alternative means of inhibition, we used heparin to mask the dystroglycan binding site of the laminin-1, known to overlap with heparin binding sites. Cell motility was characterized in a two-dimensional motility assay based on computer-controlled videomicroscopy and statistical analysis of cellular trajectories. We obtained data on both the cell velocity and the diffusion index, a measure of direction-changing frequency. Both means of inhibition of dystroglycan function led to a significant decrease in the ability of laminin-1 to stimulate cell migration. At the same time, dystroglycan function does not appear to be involved in laminin-1-dependent increase in process dynamism and direction-changing activity.