Published in

American Chemical Society, Inorganic Chemistry, 24(49), p. 11264-11266, 2010

DOI: 10.1021/ic102037m

Links

Tools

Export citation

Search in Google Scholar

Tuning the Spin Ground State in Heterononanuclear Nickel(II)-Copper(II) Cylinders with a Triangular Metallacyclophane Core

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Two new heterometallic Ni(II)(n)Cu(II)((9-n)) complexes [n = 1 (2) and 2 (3)] have been synthesized following a multicomponent self-assembly process from a n:(3 - n):2:6 stoichiometric mixture of Ni(2+), Cu(2+), L(6-), and [CuL'](2+), where L and L' are the bridging and blocking ligands 1,3,5-benzenetris(oxamate) and N,N,N',N'',N''-pentamethyldiethylenetriamine, respectively. Complexes 2 and 3 possess a unique cyclindrical architecture formed by three oxamato-bridged trinuclear linear units connected through two 1,3,5-substituted benzenetris(amidate) bridges, giving a triangular metallacyclophane core. They behave as a ferromagnetically coupled trimer of two (2)/one (3) S = (1)/(2) Cu(II)(3) plus one (2)/two (3) S = 0 Ni(II)Cu(II)(2) linear units with overall S = 1 Ni(II)Cu(II)(8) (2) and S = (1)/(2) Ni(II)(2)Cu(II)(7) (3) ground states.